Insights into glacial processes from micromorphology of silt-sized sediment (2024)

Alley, R. B., Blankenship, D. D., Bentley, C. R., and Rooney, S. T.: Deformation of till beneath ice stream B, West Antarctica, Nature, 322, 57–59, https://doi.org/10.1038/322057a0, 1986. 

Alley, R. B., Cuffey, K. M., Evenson, E. B., Strasser, J. C., Lawson, D. E., and Larson, G. J.: How glaciers entrain and transport basal sediments: physical constraints, Quaternary Sci. Rev., 16, 1017–1038, https://doi.org/10.1016/S0277-3791(97)00034-6, 1997. 

Alley, R. B., Cuffey, K. M., and Zoet, L. K.: Glacial erosion: status and outlook, Ann. Glaciol., 60, 1–13, https://doi.org/10.1017/aog.2019.38, 2019. 

Anderson, J. B. and Fretwell, L. O.: Geomorphology of the onset area of a paleo-ice stream, Marguerite Bay, Antarctic Peninsula, Earth Surf. Proc. Land., 33, 503–512, https://doi.org/10.1002/esp.1662, 2008. 

Anderson, J. B., Conway, H., Bart, P. J., WItus, A. E., Greenwood, S. L., McKay, R. M., Hall, B. L., Ackert, R. P., Licht, K., Jakobsson, M., and Stone, J. O.: Ross Sea paleo-ice sheet drainage and deglacial history during and since the LGM, Quaternary Sci. Adv., 100, 31–54, https://doi.org/10.1016/j.quascirev.2013.08.020, 2014. 

Andreassen, K. and Winsborrow, M.: Signature of ice streaming in Bjørnøyrenna, Polar North Atlantic, through the Pleistocene and implications for ice-stream dynamics, Ann. Glaciol., 50, 17–26, https://doi.org/10.3189/172756409789624238, 2009. 

Bindschadler, R.: The importance of pressurized subglacial water in separation and sliding at the glacier bed, J.Glaciol., 29, 3–19, https://doi.org/10.3189/S0022143000005104, 1983. 

Bjarnadóttir, L. R., Winsborrow, M. C. M., and Andreassen, K.: Deglaciation of the central Barents Sea, Quaternary Sci. Rev., 92, 208–226, https://doi.org/10.1016/j.quascirev.2013.09.012, 2014. 

Blackman, D. K., Von Herzen, R. P., and Lawver, L. A.: Heat flow and tectonics in the Western Ross Sea, Antarctica, Vol. 5B9, 179–189, Earth Science Series, Circum-Pacific Council for Energy and Mineral Resources, https://www.amazon.com/Antarctic-Continental-Margin-Geophysics-Circum-Pacific/dp/0933687052 (last access: May2023), 1987. 

Boulton, G. S., Dobbie, K. E., and Zatsepin, S.: Sediment deformation beneath glaciers and its coupling to the subglacial hydraulic system, Quatern. Int., 86, 3–28, https://doi.org/10.1016/S1040-6182(01)00048-9, 2001. 

Bowling, J. S., Livingstone, S. J., Sole, A. J., and Chu, W.: Distribution and dynamics of Greenland subglacial lakes, Nat. Commun., 10, 2810, https://doi.org/10.1038/s41467-019-10821-w, 2019. 

Campaña, I., Benito-Calvo, A., Pérez-González, Bermúdez de Castro, J. M., and Carbonell, E.: Assessing automated image analysis of sand grain shape to identify sedimentary facies, Gran Dolina archaeological site (Burgos, Spain), Sediment. Geol., 346, 72–83, https://doi.org/10.1016/j.sedgeo.2016.09.010, 2016. 

Carter, S. P., Fricker, H. A., Blankenship, D. D., Johnson, J. V., Lipscomb, W. H., Price, S. F., and Young, D. A.: Modeling 5years of subglacial lake activity in the MacAyeal Ice Stream (Antarctica) catchment through assimilation of ICESat laser altimetry, Ann. Glaciol., 57, 1098–1112, https://doi.org/10.3189/002214311798843421, 2011. 

Charpentier, I., Staszyc, A. B., Wellner, J. S., and Alejandro, V.: Quantifying grain shape with MorpheoLV: a case study using Holocene glacial marine sediments, EPJ Web Conf., 140, 14003, https://doi.org/10.1051/epjconf/201714014003, 2017. 

Christoffersen, P., Tulaczyk, S., and Behar, A.: Basal ice sequences in Antarctic ice stream: exposure of past hydrologic conditions and a principal mode of sediment transfer, J. Geophys. Res.-Earth, 115, https://doi.org/10.1029/2009JF001430, 2010. 

Clark, R. W., Wellner, J. S., Hillenbrand, C.-D., Totten, R. L., Smith, J. A., Simkins, L. M., Larter, R. D., Hogan, K. A., Graham, A. G. C., Nitsche, F. O., Lehrmann, A. A., Lepp, A. P., Kirkham, J. D., Fitzgerald, V. T., Garcia-Barrera, G., Ehrmann, W., and Wacker, L.: Synchronous retreat of Thwaites and Pine Island glaciers in response to external forcings in the pre-satellite era, P.Natl. Acad. Sci. USA, 121, e2211711120, https://doi.org/10.1073/pnas.2211711120, 2024. 

Cooper, A. K., Davey, F. J., and Behrendt, J. C.: The Antarctic Continental Margin: Geology and Geophysics of the Western Ross Sea, Vol. 5B9, 27–65, Earth Science Series, Circum-Pacific Council for Energy and Mineral Resources, https://www.amazon.com/Antarctic-Continental-Margin-Geophysics-Circum-Pacific/dp/0933687052 (last access: May2023), 1987. 

Cowan, E. A., Hillenbrand, C.-D., Hassler, L. E., and Ake, M. T.: Coarse-grained terrigenous sediment deposition on continental rise drifts: a record of Plio-Pleistocene glaciation on the Antarctic Peninsula, Palaeogeogr. Palaeocl., 265, 275–291, https://doi.org/10.1016/j.palaeo.2008.03.010, 2008. 

Creyts, T. T. and Clarke, G. K. C.: Hydraulics of subglacial supercooling: theory and simulations for clear water flows, J.Geophys. Res.-Earth, 115, F03021, https://doi.org/10.1029/2009JF001417, 2010.. 

Crompton, J. W., Flowers, G. E., and Dyck, B.: Characterization of glacial silt and clay using automated mineralogy, Ann. Glaciol., 60, 49–65, https://doi.org/10.1017/aog.2019.45, 2019. 

Damiani, T. M., Jordan, T. A., Ferraccioli, F., Young, D. A., and Blankenship, D. D.: Variable crustal thickness beneath Thwaites Glacier revealed from airborne gravimetry, possible implications for geothermal heat flux in West Antarctica, Earth Planet. Sc. Lett., 407, 109–122, https://doi.org/10.1016/j.epsl.2014.09.023, 2014. 

Dreimanis, A. and Vagners, U. J.: Bimodal distribution of rock and mineral fragments in basal tills, in:, Till: a symposium, edited by: Goldthwait, R. P., Columbus, OH, Ohio State University Press, 237–250, 1971. 

Dreimanis, A. and Vagners, U. J.: The effect of lithology upon texture of till, in: Research Methods in Pleistocene Geomorphology, edited by: Yatsu, E. and Falconer, A., Proceedings: 2nd Guelph Symposium on Geomorphology, Norwich, England, Geo Abstracts Ltd., 66–82, 1972. 

Dziadek, R., Ferraccioli, F., and Gohl, K.: High geothermal heat flow beneath Thwaites Glacier in West Antarctica inferred from aeromagnetic data, Nat. Commun. Earth Environ., 162, 162, https://doi.org/10.1038/s43247-021-00242-3, 2021. 

Ehrmann, W., Hillenbrand, C.-D., Smith, J. A., Graham, A. G. C., Kuhn, G., and Larter, R. D.: Provenance changes between recent and glacial-time sediments in the Amundsen Sea embayment, West Antarctica: clay mineral assemblage evidence, Antarct. Sci., 23, 471–486, https://doi.org/10.1017/S0954102011000320, 2011. 

Esteves, M., Bjarnadóttir, L. R., Winsborrow, M. C. M., Shackleton, C. S., and Andreassen, K.: Retreat patterns and dynamics of the Sentralbankrenna glacial system, central Barents Sea, Quaternary Sci. Rev., 169, 131–147, https://doi.org/10.1016/j.quascirev.2017.06.004, 2017. 

Esteves, M., Rüther, D., Winsborrow, M. C. M., Livingstone, S. J., Shackleton, C. S., and Andreassen, K.: An interconnected palaeo-subglacial lake system in the central Barents Sea, EarthArxiv [ArXiv pre-print], https://doi.org/10.31223/X58934, 2022. 

Evans, D. J. A., Phillips, E. R., Hiemstra, J. F., and Auton, C. A.: Subglacial till: Formation, sedimentary characteristics and classification, Earth-Sci. Rev., 78, 115–176, https://doi.org/10.1016/j.earscirev.2006.04.001, 2006. 

Evans, J., Pudsey, C. J., Ó Cofaigh, C., Morris, P., and Domack, E.: Late Quaternary glacial history, flow dynamics, and sedimentation along the eastern margin of the Antarctic Peninsula Ice Sheet, Quaternary Sci. Rev., 24, 741–774, https://doi.org/10.1016/j.quascirev.2004.10.007, 2005. 

Flowers, G. E.: Hydrology and the future of the Greenland Ice Sheet, Nat. Commun., 9, 2729, https://doi.org/10.1038/s41467-018-05002-0, 2018. 

Fricker, H. A., Scambos, T., Bindschadler, R., and Padman, L.: An active subglacial water system in West Antarctica mapped from space, Science, 315, 1544–1548, https://doi.org/10.1126/science.1136897, 2007. 

Gilbert, E. and Kittel, C.: Surface melt and runoff on Antarctic ice shelves at 1.5°C, 2°C, and 4°C of future warming, Geophys. Res. Lett., 48, e2020GL091733, https://doi.org/10.1029/2020GL091733, 2021. 

Greco, N. and Jaeger, J. M.: Modeling Mud: Flocs as Global Meltwater Indicators in Ice-Proximal Glacimarine Sediments, AGU Fall Meeting Abstracts, 2020, December 2020, EP001-0014, 2020. 

Greenwood, S. L., Gyllencreutz, R., Jakobsson, M., and Anderson, J. B.: Ice-flow switching and East/West Antarctic Ice Sheet roles in glaciation of the western Ross Sea, Geol. Soc. Am. Bull., 124, 1736–1749, https://doi.org/10.1130/B30643.1, 2012. 

Gustafson, C. D., Key, K., Siegfried, M. R., Winberry, J. P., Fricker, H. A., Venturelli, R. A., and Michaud, A. B.: A dynamic saline groundwater system mapped beneath an Antarctic ice stream, Science, 376, 640–644, https://doi.org/10.1126/science.abm3301, 2022. 

Halberstadt, A. R. W., Simkins, L. M., Greenwood, S. L., and Anderson, J. B.: Past ice-sheet behaviour: retreat scenarios and changing controls in the Ross Sea, Antarctica, The Cryosphere, 10, 1003–1020, https://doi.org/10.5194/tc-10-1003-2016, 2016. 

Halberstadt, A. R. W., Simkins, L. M., Anderson, J. B., Prothro, L. O., and Bart, P. J.: Characteristics of the deforming bed: till properties on the deglaciated Antarctic continental shelf. J.Glaciol., 64, 1014–1027, https://doi.org/10.1017/jog.2018.92, 2018. 

Haldorsen, S.: Grain-size distribution of subglacial till and its relation to glacial crushing and abrasion, Boreas, 10, 91–105, https://doi.org/10.1111/j.1502-3885.1981.tb00472.x, 1981. 

Hart, J. K.: Athabasca Glacier, Canada– a field example of subglacial ice and till erosion? Earth Surf. Proc. Land., 31, 65–80, https://doi.org/10.1002/esp.1233, 2006. 

Henriksen, N., Higgins, A., Kalsbeck, F., and Pulvertaft, T. C. R.: Greenland from Archaen to Quaternary. Descriptive text to the 1995 Geological map of Greenland, 1:2 500 000, 2nd edition, GEUS Bulletin, 18, 1–126, https://doi.org/10.31494/geusb.v18.4993, 2009. 

Hillenbrand, C.-D., Grobe, H., Diekmann, B., Kuhn, G., and Fütterer, D. K.: Distribution of clay minerals and proxies for productivity in surface sediments of the Bellingshausen and Amundsen seas (West Antarctica)– relation to modern environmental conditions, Mar. Geol., 193, 253–271, https://doi.org/10.1016/S0025-3227(02)00659-X, 2003. 

Hillenbrand, C.-D., Kuhn, G., Smith, J. A., Gohl, K., Graham, A. G. C., Larter, R. D., Klages, J. P., Downey, R., Moreton, S. G., Forwick, M., and Vaughan, D. G.: Grounding-line retreat of the West Antarctic Ice Sheet from inner Pine Island Bay, Geology, 41, 35–38, https://doi.org/10.1130/G33469.1, 2013. 

Hodson, T. O., Powell, R. D., Brachfeld, S. A., Tulaczyk, S., Scherer, R. P., and the WISSARD Science Team: Physical processes in Subglacial Lake Whillans, West Antarctica: Inferences from sediment cores, Earth Planet. Sc. Lett., 444, 56–63, https://doi.org/10.1016/j.epsl.2016.03.036, 2016. 

Hoffman, A. O., Christianson, K., Shapero, D., Smith, B. E., and Joughin, I.: Brief communication: Heterogenous thinning and subglacial lake activity on Thwaites Glacier, West Antarctica, The Cryosphere, 14, 4603–4609, https://doi.org/10.5194/tc-14-4603-2020, 2020. 

Hogan, K. A., Jakobsson, M., Mayer, L., Reilly, B. T., Jennings, A. E., Stoner, J. S., Nielsen, T., Andresen, K. J., Nørmark, E., Heirman, K. A., Kamla, E., Jerram, K., Stranne, C., and Mix, A.: Glacial sedimentation, fluxes and erosion rates associated with ice retreat in Petermann Fjord and Nares Strait, north-west Greenland, The Cryosphere, 14, 261–286, https://doi.org/10.5194/tc-14-261-2020, 2020a. 

Hogan, K. A., Larter, R. D., Graham, A. G. C., Arthern, R., Kirkham, J. D., Totten, R. L., Jordan, T. A., Clark, R., Fitzgerald, V., Wåhlin, A. K., Anderson, J. B., Hillenbrand, C.-D., Nitsche, F. O., Simkins, L., Smith, J. A., Gohl, K., Arndt, J. E., Hong, J., and Wellner, J.: Revealing the former bed of Thwaites Glacier using sea-floor bathymetry: implications for warm-water routing and bed controls on ice flow and buttressing, The Cryosphere, 14, 2883–2908, https://doi.org/10.5194/tc-14-2883-2020, 2020b. 

Hogan, K. A., Arnold, N. S., Larter, R. D., Kirkham, J. D., Noormets, R., Ó Cofaigh, C., Golledge, N. R., and Dowdeswell, J. A.: Subglacial water flow over an Antarctic palaeo-ice stream bed, , J.Geophys. Res.-Earth, 127, e2021JF006442, https://doi.org/10.1029/2021JF006442, 2022. 

Immonen, N.: Surface microtextures of ice-rafted quartz grains revealing glacial ice in the Cenozoic Arctic, Palaeogeogr. Palaeocl., 374, 293–302, https://doi.org/10.1016/j.palaeo.2013.02.003, 2013. 

Iverson, N. R.: Shear resistance and continuity of subglacial till: hydrology rules, J.Glaciol., 56, 1104–1114, https://doi.org/10.3189/002214311796406220, 2010. 

Iverson, N. R., Hooyer, T. S., and Hooke, R. L.: A laboratory study of sediment deformation: stress heterogeneity and grain-size evolution, Ann. Glaciol., 22, 167–175, https://doi.org/10.3189/1996AoG22-1-167-175, 1996. 

Iverson, N. R., McCracken, R. G., Zoet, L. K., Benediktsson, Í. Ö., Schomacker, A., Johnson, M. D., and Woodard, J.: A theoretical model of drumlin formation based on observations at Múlajökull, Iceland, J.Geophys. Res.-Earth, 122, 2302–2323, https://doi.org/10.1002/2017JF004354, 2017. 

Jakobsson, M., Hogan, K. A., Mayer, L. A., Mix, A., Jennings, A., Stoner, J., Eriksson, B., Jerram, K., Mohammad, R., Pearce, C., Reilly, B., and Stranne, C.: The Holocene retreat dynamics and stability of Petermann Glacier in northwest Greenland, Nat. Commun., 9, 2104, https://doi.org/10.1038/s41467-018-04573-2, 2018. 

Jennings, A., Reilly, B., Andrews, J., Hogan, K., Walczak, M., Jakobsson, M., Stoner, J., Mix, A., Nicholls, K. W., O'Regan, M., Prins, M. A., and Troelstra, S. R.: Modern and early Holocene ice shelf sediment facies from Petermann Fjord and northern Nares Strait, northwest Greenland, Quaternary Sci. Rev., 283, 107460, https://doi.org/10.1016/j.quascirev.2022.107460, 2022. 

Kennedy, D. S. and Anderson, J. B.: Glacial-marine sedimentation and Quaternary glacial history of Marguerite Bay, Antarctic Peninsula, Quaternary Res., 31, 255–276, https://doi.org/10.1016/0033-5894(89)90008-2, 1989. 

Kilfeather, A. A., Ó Cofaigh, C., Lloyd, J. M., Dowdeswell, J. A., Xu, S., and Moreton, S. G.: Ice-stream retreat and ice-shelf history in Marguerite Trough, Antarctic Peninsula: Sedimentological and foraminiferal signatures, Geol. Soc. Am. Bull., 123, 997–1015, https://doi.org/10.1130/B30282.1, 2011. 

Kirkham, J. D., Hogan, K. A., Larter, R. D., Arnold, N. S., Nitsche, F. O., Golledge, N. R., and Dowdeswell, J. A.: Past water flow beneath Pine Island and Thwaites glaciers, West Antarctica, The Cryosphere, 13, 1959–1981, https://doi.org/10.5194/tc-13-1959-2019, 2019. 

Kirkham, J. D., Hogan, K. A., Larter, R. D., Arnold, N. S., Nitsche, F. O., Kuhn, G., Gohl, K., Anderson, J. B., and Dowdeswell, J. A.: Morphometry of bedrock meltwater channels on Antarctic inner continental shelves: Implications for channel development and subglacial hydrology, Geomorphology, 370, 107369, https://doi.org/10.1016/j.geomorph.2020.107369, 2020. 

Kirshner, A. E., Anderson, J. B., Jakobsson, M., O'Regan, M., Majewski, W., and Nitsche, F. O.: Post-LGM deglaciation in Pine Island Bay, West Antarctica, Quaternary Sci. Rev., 38, 11–26, https://doi.org/10.1016/j.quascirev.2012.01.017, 2012. 

Knight, P. G., Waller, R. I., Patterson, C. J., Jones, A. P., and Robinson, Z. P.: Discharge of debris from ice at the margin of the Greenland ice sheet, J. Glaciol., 48, 192–198, https://doi.org/10.3189/172756502781831359, 2002. 

Křížek, M., Krbcová, K., Mida, P., and Hanáček, M.: Micromorphological changes as an indicator of the transition from glacial to glaciofluvial quartz grains: Evidence from Svalbard, Sediment. Geol., 358, 35–43, https://doi.org/10.1016/j.sedgeo.2017.06.010, 2017. 

Kuhn, G., Hillenbrand, C.-D., Kasten, S., Smith, J. A., Nitsche, F. O., Frederichs, T., Wiers, S., Ehrmann, W., Klages, J. P., and Mogollon, J. M.: Evidence for a palaeo-subglacial lake on the Antarctic continental shelf, Nat. Commun., 8, 15591, https://doi.org/10.1038/ncomms15591, 2017. 

Kurtz, D. D. and Anderson, J. B.: Recognition and sedimentologic description of recent debris flow deposits from the Ross and Weddell seas, Antarctica, J.Sediment. Res., 49, 1159–1169, https://doi.org/10.1306/212F78D8-2B24-11D7-8648000102C1865D, 1979. 

Larter, R. D., Anderson, J. B., Graham, A. G. C., Gohl, K., Hillenbrand, C.-D., Jakobsson, M., Johnson, J. S., Kuhn, G., Nitsche, F. O., Smith, J. A., Witus, A. E., Bentley, M. J., Dowdeswell, J. A., Ehrmann, W., Klages, J. P., Lindow, J., Ó Cofaigh, C., and Spiegel, C.: Reconstruction of changes in the Amundsen Sea and Bellingshausen Sea sector of the West Antarctic Ice Sheet since the Last Glacial Maximum, Quaternary Sci. Rev., 100, 55–86, https://doi.org/10.1016/j.quascirev.2013.10.016, 2014. 

Lecavalier, B. S., Fisher, D. A., Milne, G. A., Vinther, B. M., Tarasov, L., Huybrechts, P., Lacelle, D., Main, B., Zheng, J., Bourgeois, J., and Dyke, A. S.: High Arctic Holocene temperature record from the Agassiz ice cap and Greenland ice sheet evolution, P.Natl. Acad. Sci. USA, 114, 5952–5957, https://doi.org/10.1073/pnas.1616287114, 2017. 

Leidman, S. Z., Rennermalm, A. K., Muthyala, R., Guo, Q., and Overeem, I.: The presence and widespread distribution of dark sediment in Greenland Ice Sheet supraglacial streams implies substantial impact of microbial communities on sediment deposition and albedo, Geophys. Res. Lett., 48, 2020GL088444, https://doi.org/10.1029/2020GL088444, 2020. 

Lenaerts, J. T. M., Vizcaino, M., Fyke, J., van Kampenhout, L., and van den Broeke, M. R.: Present-day and future Antarctic ice sheet climate and surface mass balance in the Community Earth System Model, Clim. Dynam., 47, 1367–1381, https://doi.org/10.1007/s00382-015-2907-4, 2016. 

Lepp, A. P., Simkins, L. M., Anderson, J. B., Clark, R. W., Wellner, J. S., Hillenbrand, C.-D., Smith, J. A., Lehrmann, A. A., Totten, R., Larter, R. D., Hogan, K. A., Nitsche, F. O., Graham, A. G. C., and Wacker, L.: Sedimentary signatures of persistent subglacial meltwater drainage from Thwaites Glacier, Antarctica, Front. Earth Sci., 10, 863200, https://doi.org/10.3389/feart.2022.863200, 2022. 

Lepp, A. P., Miller, L. E., Anderson, J. B., O'Regan, M., Winsborrow, M., Smith, J., Hillenbrand, C.-D., Wellner, J., Prothro, L., and Podolskiy, E.: Grain shape and microtexture of glacial silt-sized sediments from Antarctica, Northwest Greenland, and the central Barents Sea, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.961704, 2023. 

Lešić, N.-M., Streuff, K. T., Bohrmann, G., and Kuhn, G.: Glacimarine sediments from outer Drygalski Trough, sub-Antarctic South Georgia– evidence for extensive glaciation during the Last Glacial Maximum, Quaternary Sci. Rev., 292, 107657, https://doi.org/10.1016/j.quascirev.2022.107657, 2022. 

Licht, K. J., Dunbar, N. W., Andrews, J. T., and Jennings, A. E.: Distinguishing subglacial till and glacial marine diamictons in the western Ross Sea, Antarctica: Implications for a last glacial maximum grounding line, GSA Bulletin, 111, 91–103, https://doi.org/10.1130/0016-7606(1999)111<0091:DSTAGM>2.3.CO;2, 1999. 

Licht, K. J., Lederer, J. R., and Swope, R. J.: Provenance of LGM glacial till (sand fraction) across the Ross embayment, Antarctica, Quaternary Sci. Rev., 24, 1499–1520, https://doi.org/10.1016/j.quascirev.2004.10.017, 2005. 

Livingstone, S. J., Ó Cofaigh, C., Stokes, C. R., Hillenbrand, C.-D., Vieli, A., and Jamieson, S. S. R.: Glacial geomorphology of Marguerite Bay Palaeo-Ice stream, western Antarctic Peninsula, J.Maps, 9, 558–572, https://doi.org/10.1080/17445647.2013.829411, 2013. 

Livingstone, S. J., Li, Y., Rutishauser, A., Sanderson, R. J., Winter, K., Mikucki, J. A., Björnsson, H., Bowling, J. S., Chu, W., Dow, C. F., Fricker, H. A., McMillan, M., Ng, F. S. L., Ross, N., Sieger, M. J., Siegfried, M., and Sole, A. J.: Subglacial lakes and their changing role in a warming climate, Nat. Rev. Earth Environ., 3, 106–124, https://doi.org/10.1038/s43017-021-00246-9, 2022. 

Livsey, D. N., Simms, A. R., Clary, W. G., Wellner, J. S., Anderson, J. B., and Chandler, J. P.: Fourier grain-shape analysis of Antarctic marine core: the relative influence of provenance and glacial activity on grain shape, J.Sediment. Res., 83, 80–90, https://doi.org/10.2110/jsr.2013.5, 2013. 

Lowe, A. L. and Anderson, J. B.: Evidence for abundant subglacial meltwater beneath the paleo-ice sheet in Pine Island Bay, Antarctica, J. Glaciol., 49, 125–138, https://doi.org/10.3189/172756503781830971, 2003. 

Mahaney, W. C.: Atlas of sand grain surface textures and applications, Oxford University Press, United Kingdom, ISBN: 9780195138122, USA, 2002. 

Malczyk, G., Gourmelen, N., Goldberg, D., Wuite, J., and Nagler, T.: Repeat subglacial lake drainage and filling beneath Thwaites Glacier, Geophys. Res. Lett., 47, e2020GL089658, https://doi.org/10.1029/2020GL089658, 2020. 

Manning, A. J., Spearman, J. R., Whitehouse, R. J. S., Pidduck, E. L., Baugh, J. V., and Spencer, K. L.: Flocculation Dynamics of Mud: San Mixed Suspensions, in: Sediment transport processes and their modelling applications, edited by: Manning, A. J., InTech, Rijeka, Croatia, 119–125, https://doi.org/10.5772/55233, 2013. 

Marsaglia, K., Milliken, K., and Doran, L.: IODP digital reference for smear slide analysis of marine mud. Part1: Methodology and atlas of siliciclastic and volcanogenic components, IODP Technical Note1, IODP Management International (IODP-MI), Inc., https://doi.org/10.2204/iodp.tn.1.2013, 2013. 

McCave, I. N., Manighetti, B., and Robinson, S. G.: Sortable silt and fine sediment size/composition slicing: Parameters for palaeocurrent speed and palaeoceanography, Paleoceanogr. Paleocl., 10, 593–610, https://doi.org/10.1029/94PA03039, 1995. 

McFarlin, J. M., Axford, Y., Osburn M. R., Kelly, M. A., Osterberg, E. C., and Farnsworth, L. B.: Pronounced summer warming in northwest Greenland during the Holocene and Last Interglacial, P.Natl. Acad. Sci. USA, 115, 201720420, https://doi.org/10.1073/pnas.1720420115, 2018. 

Menzies, J.: Strain pathways, till internal architecture and microstructures-perspectives on a general kinematic model– a “blueprint” for till development, Quaternary Sci. Rev., 50, 105–124, https://doi.org/10.1016/j.quascirev.2012.07.012, 2012. 

Meyer, C. R., Robel, A. A., and Rempel, A. W.: Frozen fringe explains sediment freeze-on during Heinrich events, Earth Planet. Sc. Lett., 524, 115725, https://doi.org/10.1016/j.epsl.2019.115725, 2019. 

Munoz, Y. P. and Wellner, J. S.: Seafloor geomorphology of western Antarctic Peninsula bays: asignature of ice flow behaviour, The Cryosphere, 12, 205–225, https://doi.org/10.5194/tc-12-205-2018, 2018. 

Muto, A., Peters, L. E., Gohl, K., Sasgen, I., Alley, R. B., Anandakrishnan, S., and Riverman, K. L.: Subglacial bathymetry and sediment distribution beneath Pine Island Glacier ice shelf modeled using aerogravity and in situ geophysical data: new results, Earth Planet. Sc. Lett., 443, 63–75, https://doi.org/10.1016/j.epsl.2015.10.037, 2016. 

Nitsche, F. O., Gohl, K., Larter, R. D., Hillenbrand, C.-D., Kuhn, G., Smith, J. A., Jacobs, S., Anderson, J. B., and Jakobsson, M.: Paleo ice flow and subglacial meltwater dynamics in Pine Island Bay, West Antarctica, The Cryosphere, 7, 249–262, https://doi.org/10.5194/tc-7-249-2013, 2013. 

Oakey, R. J., Green, M., Carling, P. A., Lee, M. W. E., Sear, D. A., and Warburton, J.: Grain-shape analysis– a new method for determining representative particle shapes for populations of natural grains, J.Sediment. Res., 75, 1065–1073, https://doi.org/10.2110/jsr.2005.079, 2005. 

Ó Cofaigh, C. and Dowdeswell, J. A.: Laminated sediments in glacimarine environments: diagnostic criteria for their interpretation, Quaternary Sci. Rev., 20, 1411–1436, https://doi.org/10.1016/S0277-3791(00)00177-3, 2001. 

Ó Cofaigh, C., Dowdeswell, J. A., Allen, C. S., Hiemstra, J. F., Pudsey, C. J., Evans, J., and Evans, D. J. A.: Flow dynamics and till genesis associated with a marine-based Antarctic palaeo-ice stream, Quaternary Sci. Rev., 24, 709–740, https://doi.org/10.1016/j.quascirev.2004.10.006, 2005. 

Ó Cofaigh, C., Davies, B. J., Livingstone, S. J., Smith, J. A., Johnson, J. S., Hocking, E. P., Hodgson, D. A., Anderson, J. B., Bentley, M. J., Canals, M., Domack, E., Dowdeswell, J. A., Evans, J., Glasser, N. F., Hillenbrand, C.-D., Larter, R. D., Roberts, S. J., and Simms, A. R.: Reconstruction of ice-sheet changes in the Antarctic Peninsula since the Last Glacial Maximum, Quaternary Sci. Rev., 100, 87–100, https://doi.org/10.1016/j.quascirev.2014.06.023, 2014. 

O'Regan, M., Cronin, T. M., Reilly, B., Alstrup, A. K. O., Gemery, L., Golub, A., Mayer, L. A., Morlighem, M., Moros, M., Munk, O. L., Nilsson, J., Pearce, C., Detlef, H., Stranne, C., Vermassen, F., West, G., and Jakobsson, M.: The Holocene dynamics of Ryder Glacier and ice tongue in north Greenland, The Cryosphere, 15, 4073–4097, https://doi.org/10.5194/tc-15-4073-2021, 2021. 

Passchier, S., Hansen, M. A., and Rosenberg, J.: Quartz grain microtextures illuminate Pliocene periglacial sand fluxes on the Antarctic continental margin, Depositional Record, 7, 564–581, https://doi.org/10.1002/dep2.157, 2021. 

Prothro, L. O., Simkins, L. M., Majewski, W., and Anderson, J. B.: Glacial retreat patterns and processes determined from integrated sedimentology and geomorphology records. Mar. Geol., 395, 104–119, https://doi.org/10.1016/j.margeo.2017.09.012, 2018. 

Prothro, L. O., Majewski, W., Yokoyama, Y., Simkins, L. M., Anderson, J. B., Yamane, M., Miyairi, Y., and Ohkouchi, N.: Timing and Pathways of East Antarctic Ice Sheet Retreat, Quaternary Sci. Rev., 230, 106166, https://doi.org/10.1016/j.quascirev.2020.106166, 2020. 

Reinardy, B. T. I., Hiemstra, J. F., Murray, T., Hillenbrand, C.-D., and Larter, R. D.: Till genesis at the bed of an Antarctic Peninsula palaeo-ice stream as indicated by micromorphological analysis, Boreas, 40, 498–517, https://doi.org/10.1111/j.1502-3885.2010.00199.x, 2011. 

Rempel, A. W.: A theory for ice-till interactions and sediment entrainment beneath glaciers, J.Geophys. Res.-Earth, 113, F01013, https://doi.org/10.1029/2007JF000870, 2008. 

Rilling, S., Mukasa, S., Wilson, T., Lawver, L., and Hall, C.: New determinations of 40Ar/39Ar isotopic ages and flow volumes for Cenozoic volcanism in the Terror Rift, Ross Sea, Antarctica, J.Geophys. Res. 114, B12207, https://doi.org/10.1029/2009JB006303, 2009. 

Robinson, D. E., Menzies, J., Wellner, J. S., and Clark, R. W.: Subglacial sediment deformation in the Ross Sea, Antarctica, Quaternary Sci. Adv., 4, 100029, https://doi.org/10.1016/j.qsa.2021.100029, 2021. 

Rose, K. C. and Hart, J. K.: Subglacial comminution in the deforming bed: inferences from SEM analysis, Sediment. Geol., 203, 87–97, https://doi.org/10.1016/j.sedgeo.2007.11.003, 2008. 

Roseby, Z. A., Smith, J. A., Hillenbrand, C.-D., Cartigny, M. J. B., Rosenheim, B. E., Hogan, K. A., Allen, C. S., Leventer, A., Kuhn, G., Ehrmann, W., and Larter, R. D.: History of Anvers-Hugo Trough, western Antarctic Peninsula shelf, since the Last Glacial Maximum. PartI: Deglacial history based on new sedimentological and chronological data, Quaternary Sci. Rev., 291, 107590, https://doi.org/10.1016/j.quascirev.2022.107590, 2022. 

Rüther, D. C., Bjarnadóttir, L. R., Junttila, J., Husum, K., Rasmussen, T. L., Lucchi, R. G., and Andreassen, K.: Pattern and timing of the northwestern Barents Sea Ice Sheet deglaciation and indications of episodic Holocene deposition, Boreas, 41, 494–512, https://doi.org/10.1111/j.1502-3885.2011.00244.x, 2012. 

Schroeder, D. M., Blankenship, D. D., and Young, D. A.: Evidence for a water system transition beneath Thwaites Glacier, West Antarctica, P.Natl. Acad. Sci. USA, 110, 12225–12228, https://doi.org/10.1073/pnas.1302828110, 2013. 

Schroeder, D. M., Blankenship, D. D., Young, D. A., Witus, A. E., and Anderson, J. B.: Airborne radar sounding evidence for deformable sediments and outcropping bedrock beneath Thwaites Glacier, West Antarctica, Geophys. Res. Lett., 41, 7200, 7208, https://doi.org/10.1002/2014GL061645, 2014. 

Schroeder, D. M., MacKie, E. J., Creyts, T. T., and Anderson, J. B.: A subglacial hydrologic drainage hypothesis for silt sorting and deposition during retreat in Pine Island Bay, Ann. Glaciol., 60, 14–20, https://doi.org/10.1017/aog.2019.44, 2019. 

Shackleton, C., Patton, H., Winsborrow, M., Esteves, M., Bjarnadóttir, L., and Andreassen, K.: Distinct modes of meltwater drainage and landform development beneath the last Barents Sea ice sheet, Front. Earth Sci., 11, 1111396, https://doi.org/10.3389/feart.2023.1111396, 2023. 

Siegfried, M. R., Fricker, H. A., Carter, S. P., and Tulaczyk, S.: Episodic ice velocity fluctuations triggered by a subglacial flood in West Antarctica, Geophys. Res. Lett., 43, 2640–2648, https://doi.org/10.1002/2016GL067758, 2016. 

Siegfried, M. R., Venturelli, R. A., Patterson, M. O., Arnuk, W., Campbell, T. D., Gustafson, C. D., Michaud, A. B., Galton-Fenzi, B. K., Hausner, M. B., Holzschuh, S. N., Huber, B., Manoff, K. D., Schroeder, D. M., Summers, P. T., Tyler, S., Carter, S. P., Fricker, H. A., Harwood, D. M., Leventer, A., Rosenheim, B. E., Skidmore, M. L., Priscu, J. C., and the SALSA Science Team: The life and death of a subglacial lake in West Antarctica, Geology, 51, 434–438, https://doi.org/10.1130/G50995.1, 2023. 

Simkins, L. M., Anderson, J. B., Prothro, L. O., Halberstadt, A. R. W., Stearns, L. A., Pollard, D., and DeConto, R. M.: Anatomy of a meltwater drainage system beneath the ancestral East Antarctic ice sheet, Nat. Geosci., 10, 691–697, https://doi.org/10.1038/ngeo3012, 2017. 

Simkins, L. M., Greenwood, S. L., and Anderson, J. B.: Diagnosing ice sheet grounding line stability from landform morphology, The Cryosphere, 12, 2707–2726, https://doi.org/10.5194/tc-12-2707-2018, 2018. 

Simkins, L. M., Greenwood, S. L., Winsborrow, M. C. M., Bjarnadóttir, L. R., and Lepp, A. P.: Advances in understanding subglacial meltwater drainage from past ice sheets, Ann. Glaciol., 63, 1–5, https://doi.org/10.1017/aog.2023.16, 2023. 

Simões Pereira, P., van de Flierdt, T., Hemming, S. R., Frederichs, T., Hammond, S. J., Brachfeld, S., Doherty, C., Kuhn, G., Smith, J. A., Klages, J. P., and Hillenbrand, C.-D.: The geochemical and mineralogical fingerprint of West Antarctica's weak underbelly: Pine Island and Thwaites glaciers, Chem. Geol., 550, 119649, https://doi.org/10.1016/j.chemgeo.2020.119649, 2020. 

Smith, A. M., Jordan, T. A., Ferraccioli, F., and Bingham, R. G.: Influence of subglacial conditions on ice stream dynamics: seismic and potential field data from Pine Island Glacier, West Antarctica, J.Geophys. Res.-Earth, 118, 1471–1482, https://doi.org/10.1029/2012JB009582, 2013. 

Smith, J. A., Anderson, T. J., Shortt, M., Gaffney, A. M., Truffer, M., Stanton, T. P., Bindschadler, R., Dutrieux, P., Jenkins, A., Hillenbrand, C.-D., Ehrmann, W., Corr, H. F. J., Farley, N., Crowhurst, S., and Vaughan, D. G.: Sub-ice-shelf sediments record history of twentieth-century retreat of Pine Island Glacier, Nature, 541, 77–80, https://doi.org/10.1038/nature20136, 2017. 

Smith, J. A., Graham, A. G. C., Post, A. L., Hillenbrand, C.-D., Bart, P. J., and Powell, R. D.: The marine geological imprint of Antarctic ice shelves, Nat. Commun., 10, 5635, https://doi.org/10.1038/s41467-019-13496-5, 2019. 

Stearns, L. A., Smith, B. E., and Hamilton, G. S.: Increased flow speed on a large East Antarctic outlet glacier caused by subglacial floods, Nat. Geosci. Letters, 1, 827–831, https://doi.org/10.1038/ngeo356, 2008. 

St. John, K., Passchier, S., Tantillo, B., Darby, D., and Kearns, L.: Microtextures of modern sea-ice-rafted sediment and implications for paleo-sea-ice reconstructions, Ann. Glaciol., 56, 83–93, https://doi.org/10.3189/2015AoG69A586, 2015. 

Streuff, K., Ó Cofaigh, C., Hogan, K., Jennings, A., Lloyd, J. M., Noormets, R., Nielsen, T., Juijpers, A., Dowdeswell, J. A., and Weinrebe, W.: Seafloor geomorphology and glacimarine sedimentation associated with fast-flowing ice sheet outlet glaciers in Disko Bay, West Greenland, Quaternary Sci. Rev., 169, 206–230 https://doi.org/10.1016/j.quascirev.2017.05.021, 2017. 

Sweet, D. E. and Brannan, D. K.: Proportion of glacially to fluvially induced quartz grain microtextures along the Chitina River, SEAlaska, U. S. A., J.Sediment. Res., 86, 749–761, https://doi.org/10.2110/jsr.2016.49, 2016. 

Trusel, L. D., Frey, K. E., Das, S. B., Karnauskas, K. B., Munneke, P. K., van Meijgaard, E., and van den Broeke, M. R.: Divergent trajectories of Antarctic surface melt under two twenty-first-century climate scenarios, Nat. Geosci., 8, 927–932, https://doi.org/10.1038/ngeo2563, 2015. 

van Hateren, J. A., van Buuren, U., Arens, S. M., van Balen, R. T., and Prins, M. A.: Identifying sediment transport mechanisms from grain size–shape distributions, applied to aeolian sediments, Earth Surf. Dynam., 8, 527–553, https://doi.org/10.5194/esurf-8-527-2020, 2020. 

Vlieghe, M., Coufort-Saudejaud, C., Frances, C., and Liné, A.: In situ characterization of floc morphology by image analysis in a turbulent Taylor–Couette reactor, AIChE J., 60, 2389–2403, https://doi.org/10.1002/aic.14431, Particle Technology and Fluidization, 2014. 

Vos, K.,Vandenberghe, N., and Elsen, J.: Surface textural analysis of quartz grains by scanning electron microscopy (SEM): From sample preparation to environmental interpretation, Earth-Sci. Rev., 128, 193–104, https://doi.org/10.1016/j.earscirev.2013.10.013, 2014. 

Yawar, Z. and Schieber, J.: On the origin of silt laminae in laminated shales, Sediment. Geol., 360, 22–34, https://doi.org/10.1016/j.sedgeo.2017.09.001, 2017. 

Wellner, J. S., Anderson, J. B., Ehrmann, W., Weaver, F. M., Kirshner, A., Livsey, D., and Simms, A. R.: History of an Evolving Ice Sheet as Recorded in SHALDRIL Cores From the Northwestern Weddell Sea, Antarctica, in: Tectonic, Climatic, and Cryospheric Evolution of the Antarctic Peninsula, American Geophysical Union, Washington, DC, USA, 131–151, https://doi.org/10.1029/2010SP001047, 2011.  

Wingham, D. J., Siegert, M. J., Shepherd, A., and Muir, A. S.: Rapid discharge connects Antarctic subglacial lakes, Nature, 440, 1033–1036, https://doi.org/10.1038/nature04660, 2006. 

Winsborrow, M. C. M., Andreassen, K., Corner, G. D., and Laberg, J. S.: Deglaciation of a marine-based ice sheet: Late Weichselian palaeo-ice dynamics and retreat in the southern Barents Sea reconstructed from onshore and offshore glacial geomorphology, Quaternary Sci. Rev., 29, 424–442, https://doi.org/10.1016/j.quascirev.2009.10.001, 2010. 

Witus, A. E., Branecky, C. M., Anderson, J. B., Szczucinski, W., Schroeder, D. M., Blankenship, D. D., and Jakobsson, M.: Meltwater intensive retreat in polar environments and investigation of associated sediments: example from Pine Island Bay, West Antarctica, Quaternary Sci. Rev., 85, 99–118, https://doi.org/10.1016/j.quascirev.2013.11.021, 2014. 

Insights into glacial processes from micromorphology of silt-sized sediment (2024)
Top Articles
Latest Posts
Article information

Author: Stevie Stamm

Last Updated:

Views: 5878

Rating: 5 / 5 (80 voted)

Reviews: 95% of readers found this page helpful

Author information

Name: Stevie Stamm

Birthday: 1996-06-22

Address: Apt. 419 4200 Sipes Estate, East Delmerview, WY 05617

Phone: +342332224300

Job: Future Advertising Analyst

Hobby: Leather crafting, Puzzles, Leather crafting, scrapbook, Urban exploration, Cabaret, Skateboarding

Introduction: My name is Stevie Stamm, I am a colorful, sparkling, splendid, vast, open, hilarious, tender person who loves writing and wants to share my knowledge and understanding with you.